

SCIENCES, TECHNOLOGIES, SANTÉ

Master Chimie

ECTS 120 crédits

Langues d'enseignement Français

Taux d'insertion professionnelle https:// vip.sphinxonline.net/ ovetu/ Fusion_IPIQ2/ Report_MonMaster.htm? pwd=Mas&user=chimie

Parcours proposés

 Chimie verte et éco-innovations - Classique et alternance

Présentation

Le Département de Chimie de l'UFR Sciences et Montagne a ouvert son Master Chimie Verte et Eco-Innovations à la rentrée de septembre 2021, sur le campus scientifique de Savoie Technolac, au Bourget-du-Lac.

Dans le cadre du Master, les étudiant(e)s sont formé(e)s à une chimie plus verte et plus durable, s'inscrivant dans un contexte d'économie circulaire et de bioéconomie en lien avec les problématiques environnementales, actuelles et futures. La formation s'inscrit donc complétement dans les priorités du plan France 2030. La formation est orientée sur la synthèse éco-compatible de molécules, de matériaux et de polymères, l'utilisation de technologies innovantes, de nouveaux outils analytiques et numériques pour la chimie. Une approche pluridisciplinaire permet aux étudiant(e)s d'appréhender la globalité des problématiques liées à la chimie verte, à la valorisation de biomasses et de déchets et à la transformation de procédés. Ainsi, toutes les industries de la chimie et de ses applications sont concernées

par ce Master, comme les secteurs suivants : chimie fine, agroalimentaire, pharmaceutique, agriculture, cosmétique, nutraceutique, peintures, encres, colles, adhésifs, parfums, huiles essentielles, produits d'entretien, engrais, emballages alimentaires, déchets, biotechnologies, matériaux pour la dépollution, aéronautique, automobile, plasturgie, etc.

La formation est adaptée au projet professionnel de l'étudiant(e) vers le secteur industriel ou la recherche académique.

Objectifs

L'objectif principal de l'équipe pédagogique est de former des chimistes compétents, impliqués, motivés et autonomes pour

la chimie de demain, et de les aider à s'insérer dans le monde professionnel ou à poursuivre un cursus en doctorat.

Compétences visées :

- * Concevoir, mettre en œuvre et évaluer des voies de synthèse en chimie verte ;
- * Valoriser la matière dans le cadre des enjeux environnementaux, socio-économiques et réglementaires du développement durable;
- * Conduire une approche scientifique pour résoudre des problématiques complexes ;
- * S'intégrer et se développer dans un milieu professionnel choisi ;
- * Mener des projets contribuant à la recherche, au développement et à l'innovation

Dimension internationale

Les étudiants peuvent suivre une partie du master à l'étranger dans le cadre de programmes ERASMUS ou de partenariats avec d'autres universités. Par ailleurs, la proximité géographique et les relations économiques importantes avec le bassin genevois et l'Italie du Nord conduisent un certain nombre des étudiants à effectuer des stages dans ces pays. Un stage à l'étranger est favorisé pendant le cursus en accord avec le projet professionnel des étudiants. Ils pourront également bénéficier des partenariats privilégiés au sein de l' Université européenne UNITA dont l'Université Savoie Mont Blanc fait partie. Des enseignements de l'anglais et en anglais, ainsi que des conférences données par des experts étrangers permettent aux étudiants d'entrevoir le caractère international des domaines enseignés.

Plusieurs programmes d'échanges sont proposés aux étudiants:

- * Programme BCI est un programme d'échanges avec des universités québécoises qui s'adressent aux étudiants ayant validé une année d'études et qui souhaitent étudier un semestre ou une année complète au Québec.
- * Programme ORA est un programme d'échanges avec 12 universités de la province de l'Ontario au Canada. Les

- étudiants ayant validé 2 années après le Bac et ayant un bon score au TOEFL peuvent candidater pour un semestre ou une année complète.
- * Programme ISEP est un programme qui donne la possibilité aux étudiants d'effectuer un ou deux semestres d'études dans une des 122 universités américaines membres du programme. Les étudiants doivent avoir validé au moins une année d'études post-bac et avoir un bon score au TOEFL.
- * Programme ERASMUS+ donnent la possibilité aux étudiants de faire un ou deux semestres dans une université avec laquelle un accord a été signé en Bulgarie, Espagne, Finlande et Suède.

Les atouts de la formation

- * Une formation pratique importante : stages, projets, travaux de groupes et études de cas concrets, travaux pratiques en laboratoire, visites d'entreprises et d'installations industrielles.
- * Possibilité de suivre les cours en alternance : alterner entre semaines de cours à l'université et travail dans l'entreprise pour une plus grande expérience professionnelle.
- * Une spécialisation proposée en deuxième année avec deux options au choix : valorisation des molécules organiques et applications ou valorisation des matériaux pour la dépollution.
- * La mise en place d'un bilan de compétences et d'un suivi individualisé sur les deux années de Master pour chaque étudiant.
- * Les interventions par les experts de pointe dans les différents domaines enseignés, provenant de différents laboratoires en France ou à travers le monde.
- * Un réseau de professionnels intervenant directement dans les modules d'enseignements du Master favorisant l'insertion professionnelle.
- * Une formation qui s'appuie sur de nombreuses structures partenaires : Club des Entreprises de l'Université Savoie Mont Blanc, Dispositif PITON, Antenne de la Savoie de l'agence Auvergne Rhône-Alpes Entreprises, Association Innovations Fluides Supercritiques (IFV)

- * Des experts venus de toute la France et de l'étranger, comme par exemples :
 - # Institut de Recherches sur la Catalyse et l'Environnement de Lyon IRCELyon, Lyon)
 - # Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS, Lyon)
 - # Institut de Chimie de Clermont-Ferrand (ICCF, Clermont-Ferrand)
 - # Institut des Biomolécules Max Mousseron (IBMM, Montpellier)
 - # Institut des Sciences Chimiques de Rennes (ISCR, Rennes)
 - # Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA, Lyon)
 - # Environnement Ville Société (EVS, Lyon)

Organisation

Effectifs attendus

* M1 : 24 étudiants* M2 : 24 étudiants

Aménagements d'études

Aménagements prévus dans le cadre de la mission Handicap et du dispositif Sportif Haut Niveau (SHN) / Artiste Haut Niveau (AHN).

Date de début de la formation : 28 août 2024

Date de fin de la formation : M1 : juin à août selon la durée du stage; fin août pour les alternants - M2 : septembre

Admission

A qui s'adresse la formation?

- * Le M1 est ouvert aux titulaires d'un diplôme national conférant le grade de licence dans un domaine de formation compatible avec celui du master (chimie, physique, chimie, sciences de la vie, sciences pour la santé, sciences pour l'ingénieur, sciences et technologies), aux titulaires d'un diplôme visé par l'Etat s'il correspond au niveau d'études exigé dans un domaine de formation compatible avec celui du master et aux candidats qui bénéficient d'une validation d'acquis, après examen du dossier. L'admission est prononcée par le chef d'établissement sur proposition du comité de recrutement après examen du dossier de candidature.
- * Le M2 est ouvert aux candidats qui ont validé, dans la même discipline, une première année d'un diplôme national conférant le grade de master ou une première année d'un diplôme de second cycle visé par l'Etat s'il correspond au niveau d'études exigé ainsi qu'aux candidats qui bénéficient d'une validation d'acquis. L'admission en M2 est prononcée par le chef d'établissement sur proposition du responsable de la formation.

Pour les candidats à l'alternance, l'admission ne peut être prononcée qu'après le recrutement par un employeur.

Attendus de la formation

Chimistes ou biochimiste avec un niveau de licence en chimie organique, chimie inorganique et chimie analytique. Fort intérêt pour la chimie verte demandé.

Et après

Poursuite d'études

Poursuite en doctorat pour devenir chercheur, chercheuse ou enseignant-chercheur, enseignante-chercheuse dans le secteur académique ou cadre supérieur R&D dans l'industrie.

Métiers visés et insertion professionnelle

- Ingénieur.e chimiste en R&D, en production, technico-commercial.e ou consultant
- Ingénieur e d'étude/Ingénieur de recherche
- Chargé.e d'études en laboratoire de R&D
- Chef, cheffe de projet/responsable en laboratoire de R&D
- Chargé.e de missions
- Poursuite en doctorat pour devenir chercheur, chercheuse ou enseignant.e-chercheur, chercheuse dans le secteur académique ou cadre supérieur R&D dans l'industrie.

Infos pratiques

Contacts

Responsable pédagogique

Gregory Chatel

J +33 4 79 75 88 38

 ■ Gregory.Chatel@univ-savoie.fr

Secrétariat pédagogique CHIMIE

secretariat.chimie@univ-smb.fr

Scolarité administrative Bourget

J 04 79 75 81 58

Scolarite-Administrative.Bourget@univ-smb.fr

Secrétariat alternance

Severine Sanz

J +33 4 79 75 88 72

Severine.Sanz@univ-savoie.fr

Laboratoires partenaires

Laboratoire de l'USMB : EDYTEM

Laboratoire de l'USMB : LOCIE

https://www.locie.univ-smb.fr/

Laboratoire de l'USMB : LECA

https://leca.osug.fr/

Laboratoire de l'USMB : LEPMI

L https://lepmi.grenoble-inp.fr/

Campus

Le Bourget-du-Lac / campus Savoie Technolac

En savoir plus

Suivez-nous sur LinkedIn

L https://www.linkedin.com/company/master-chimie-verteet-eco-innovations/

Site de la formation :

Land https://www.univ-smb.fr/scem/formations/departement-de-chimie/master-chimie-verte-et-eco-innovations/

Plaquette à destination des entreprises

thttps://www.univ-smb.fr/scem/wp-content/uploads/sites/82/2022/05/entreprises.pdf

Programme

Organisation

☑ Télécharger le fichier «Master Chimie Verte et Eco-Innovations - Enseignement M1-M2 2023-2024 - FORMATION EN ALTERNANCE.pdf» (955.7 Ko)

Chimie verte et éco-innovations - Classique et alternance

M1 - Chimie verte et éco-innovations - Classique et alternance

Semestre 7

	Nature	CM	TD	TP	Crédits
UE701 Evaluations environnementales et socio-économiques I	UE				2
Culture environnementale et enjeux pour la chimie	EC				2
Développement durable et de l'économie circulaire	MATIERE	1,5h	3h		
Changement climatique et bilans carbone	MATIERE	1,5h	3h		
Projet en culture environnementale, enjeux pour la chimie	MATIERE		3h	4h	
UE702 Chimie verte, catalyses et valorisations I	UE				8
Concept, indicateurs et méthodes de la chimie verte	EC				3
Concept de la chimie verte et indicateurs associés	MATIERE	3h	3h	2h	
Sonochimie	MATIERE	3h		8h	
Chimie des microndes	MATIERE	4,5h	4,5h	2h	
Produits naturels	EC				3
Origine, diversité et spécificités	MATIERE	7,5h	9h		
Chimie des carbohydrates	MATIERE	6h	3h		
Catalyses enzymatique, homogène et hétérogène 1	EC				2
Introduction à la catalyse hétérogène	MATIERE	3h	1,5h		
Introduction à la catalyse homogène	MATIERE	4,5h	3h		
Introduction à la catalyse enzymatique	MATIERE	6h	3h		
UE703 Outils de la chimie analytique	UE				9
Analyses chromatographiques et systèmes couplés	EC	6h	6h	16h	3
Analyses spectroscopiques	EC	10,5h	13,5h	3h	3
Analyses des structures et surfaces des solides	EC	12h	10,5h	6h	3
UE704 Industrie chimique du futur et outils associés I	UE				4
Conception et mise en oeuvre des réacteurs chimiques	EC	4,5h	6h	16h	2

Statistiques et plans d'expériences	EC	6h	9h		2
UE705 Compétences transversales et projets	UE				7
Anglais académique et scientifique	EC		20h	8h	3
Bloc 1 - Non alternants	BLOC				
Insertion professionnelle	EC	9h	3h		1
Projet transversal en chimie analytique	EC			30h	3
Bloc 2 - Alternants	BLOC				
Projet d'alternance	EC				4

Semestre 8

	Nature	CM	TD	TP	Crédits
UE801 Evaluations environnementales et socio-économiques II	UE				5
Ecodynamique des polluants dans la zone critique	EC	6h	4,5h		2
Impacts des polluants chimiques sur la santé humaine	EC	6h			1
Analyses de Cycle de Vie 1	EC	6h	4,5h	1,5h	1
Indicateurs et évaluations économiques	EC	7,5h	4,5h		1
UE802 Chimie verte, catalyses et valorisations II	UE				4
Méthodes de la chimie verte 2	EC				2
Fluides supercritiques	MATIERE	4,5h	1,5h	4h	
Liquides ioniques, DES et solvants verts	MATIERE	4,5h	3h	4h	
Valorisation de la biomasse et des déchets 1	EC	3h	13,5h	6h	2
UE803 Synthèses et préparations éco-compatibles I	UE				9
Chimie organique, synthèse et réactivité 1	EC	7,5h	7,5h	16h	3
Chimie des matériaux 1	EC	10,5h	10,5h	8h	3
Chimie des polymères 1	EC	9h	9h	12h	3
UE804 Industrie chimique du futur et outils associés II	UE				3
Écologie industrielle et risques chimiques	EC				1
Ecologie industrielle et territoriale	MATIERE		6h	2h	
Risques chimiques	MATIERE	3h	1,5h		
Applications des plans d'expériences	EC		4,5h	8h	1
Outils numériques pour la chimie et applications	EC	3h	3h		1
UE805 Insertion professionnelle, stage et/ou projet	UE				9
Bloc 1 - Stage et projet	BLOC				
Méthodologies de travail et de gestion de projets	EC	6h	9h	2h	1
Stage en laboratoire académique ou en entreprise 1	EC				8
Projet pluridisciplinaire et innovant PITON 1	EC				8
Bloc 2 - Alternants	BLOC				
Projet d'alternance	EC				9

M2 - Chimie verte et éco-innovations - Classique et alternance

Semestre 9

	Nature	CM	TD	TP	Crédits
UE901 Evaluations environnementales et socio-économiques III	UE				5
Droit de l'environnement - Réglementations en chimie	EC	6h	6h		2
Impacts environnementaux et notions d'écotoxicologie	EC	6h	4,5h		1
Analyses de Cycle de Vie 2	EC	9h	18h	12h	2
UE902 Chimie verte, catalyses et valorisations III	UE				11
Méthodes de la chimie verte 3	EC				3
Electrocatalyse et photocatalyse	MATIERE	4,5h	4,5h		
Mécanochimie	MATIERE	4,5h	4,5h		
Combinaison de méthodes d'activation	MATIERE	3h	3h	9h	
Valorisation de la biomasse et des déchets 2	EC	9h	1,5h	4h	2
Catalyses enzymatique, homogène et hétérogène 2	EC				4
Catalyse hétérogène	MATIERE	6h	6h		
Catalyse homogène	MATIERE	6h	6h		
Catalyse enzymatique	MATIERE	6h	4,5h		
Organocatalyse asymétrique	MATIERE	4,5h	1,5h		
Conférences en catalyses	MATIERE	1,5h			
Projet expérimental en chimie verte	EC			25h	2
Projet d'alternance	EC				2
UE903 Synthèses et préparations éco-compatibles II	UE				6
Chimie organique, synthèse et réactivité 2	EC	6h	10,5h	4h	2
Chimie des matériaux 2	EC	6h	7,5h	8h	2
Chimie des polymères 2	EC	10,5h	3h	6h	2
UE904 Industrie chimique du futur et outils associés III	UE				3
Réacteurs avancés et innovations technologiques	EC	16,5h	4,5h	18h	3
UE905 Spécialisation au choix	UE				5
Production de molécules organiques et applications	EC				5
Eco-extraction et production de substances naturelles	MATIERE	9h		24h	
Introduction aux biotechnologies et applications	MATIERE	3h	1,5h		
Matériaux pour la dépollution et applications	EC				5
Matériaux appliqués la dépollution	MATIERE	12h	7,5h	8h	
Applications à la dépollution d'effluents liquides-gazeux	MATIERE	6h	6h		

Semestre 10

	Nature	CM	TD	TP	Crédits
UE001 Compétences transversales II	UE				5
Relations entre science, environnement et société	EC	6h	3h		1
Anglais	EC		24h		3
Découverte de la Recherche et l'Innovation	EC		3h	4h	1
UE002 Insertion professionnelle, stage et/ou projet	UE				25
Bloc 1	BLOC				
Projet de promotion de la chimie durable	EC		3h	3h	1

Stage en laboratoire académique ou en entreprise 2	EC	24
Projet pluridisciplinaire et innovant PITON 2	EC	24
Bloc 2 - Alternants	BLOC	
Projet d'alternance	EC	25

